JuliaZ
Newbie
Hello everyone! While I try to run my custom Image classification app, I am getting a mistake:
My model parameters are:
I use .lite format with quantization.
If you know how to help me, please, write! Also, I can show all my codes for rewriting.
Code:
java.lang.IllegalArgumentException: Cannot copy between a TensorFlowLite tensor with shape [1, 30] and a Java object with shape [1, 1].
at org.tensorflow.lite.Tensor.throwIfShapeIsIncompatible(Tensor.java:282)
at org.tensorflow.lite.Tensor.throwIfDataIsIncompatible(Tensor.java:249)
at org.tensorflow.lite.Tensor.copyTo(Tensor.java:141)
at org.tensorflow.lite.NativeInterpreterWrapper.run(NativeInterpreterWrapper.java:161)
at org.tensorflow.lite.Interpreter.runForMultipleInputsOutputs(Interpreter.java:275)
at org.tensorflow.lite.Interpreter.run(Interpreter.java:249)
at com.example.android.tflitecamerademo.ImageClassifier.classifyFrame(ImageClassifier.java:117)
at com.example.android.tflitecamerademo.Camera2BasicFragment.classifyFrame(Camera2BasicFragment.java:663)
at com.example.android.tflitecamerademo.Camera2BasicFragment.access$900(Camera2BasicFragment.java:69)
at com.example.android.tflitecamerademo.Camera2BasicFragment$5.run(Camera2BasicFragment.java:558)
at android.os.Handler.handleCallback(Handler.java:873)
at android.os.Handler.dispatchMessage(Handler.java:99)
at android.os.Looper.loop(Looper.java:201)
at android.os.HandlerThread.run(HandlerThread.java:65)
My model parameters are:
Code:
== Input details ==
name: x shape: [ 1 256 256 3]
type: <class 'numpy.float32'>
== Output details ==
name: Identity shape: [ 1 30]
type: <class 'numpy.float32'>
I use .lite format with quantization.
If you know how to help me, please, write! Also, I can show all my codes for rewriting.
Last edited: